

Efficient incorporation of a Buncefield-type explosion in QRA analysis

Patrick Walker
Senior Risk Engineer

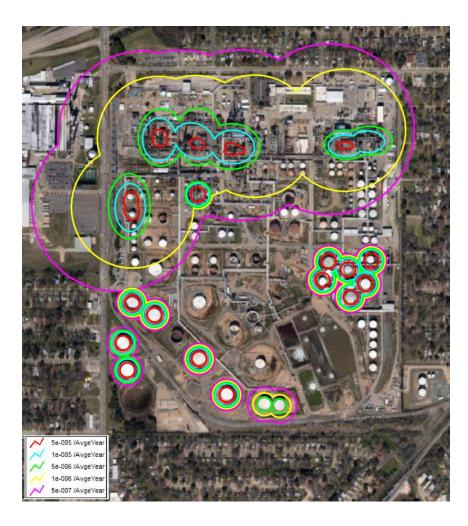
15 Yarra St PO Box 5023 South Melbourne VIC 3205 P: 03 9268 9700 F: 03 8678 0650 E: solutions@r4risk.com.au www.r4risk.com.au

INSERT REF.

The Buncefield Incident: December 2005

- At 5:30 am, gasoline is transferred to Tank 912
- Safety systems in place to shut off supply fail to operate
- Tank overfills shortly after with approximately 10 w/w% of released material feeding a vapour cloud
- A white mist observed as vapour cloud formed by the mixture of petrol and air flowed over the bund wall
- At 6:01 am, explosion of massive proportions

INSERT REF.


RISIC Presentation Plan

- Buncefield Incident Review
- Local Implications
- QRA
- Method of Analysis
- Frequency Assessment
 - Fault Tree
 - Event Tree
- Consequence Assessment
 - Estimating explosion impact
- Risk Evaluation

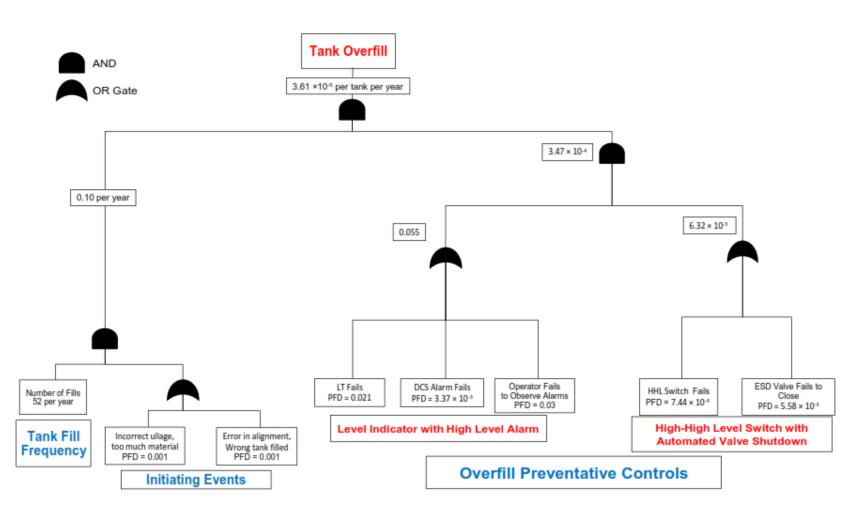
Local Implications of the Buncefield Incident

- Regulators are asking Operators to consider a Buncefield type incident
- Operators request risk analysts to assess the potential for a Buncefield type incident at their facilities
 - Terminals, Tank Farms
- Requests arise whilst conducting a risk assessment on the whole facility
 - LOPA / Bowtie Analysis; OR
 - Quantitative Risk Assessment (QRA)

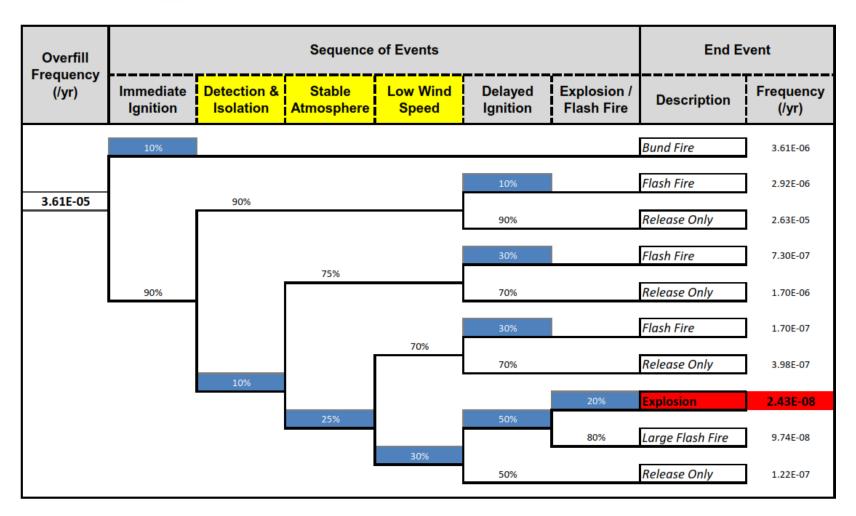
QRA and the Buncefield Incident

QRA

- Large number of scenarios (100's)
- Outcomes are generally well-understood
- Expectations based on the established techniques


The Buncefield Incident

- A single scenario
- Explosion unexpected and it's magnitude unusual
- Immense effort invested into investigation to understand event


Rethod of Analysis

- Balance detail against needs of the assessment
- Review reports by the Major Incident Investigation Board
- Quantify critical parameters for facility being assessed
 - Overfill protection
 - Composition of Material involved
 - Local weather conditions
- Explosion mechanism discussion beyond scope

Frequency Assessment: Fault Tree Analysis

Frequency Assessment: Event Tree Analysis

Consequence Assessment: Overview

- Consequences assessment based on documents prepared for the Buncefield investigation
- Assessment involves the following steps:
 - 1. Compare key parameters for out Site and Buncefield
 - 2. Examine potential cloud size using dispersion modelling
 - 3. Evaluate overpressure impact distances using *Illustrative Model*

Consequence Assessment: Comparison of Key Parameters

Key Parameters	Site	Buncefield
Fill Rate (m³/h)	Up to 1,000 m3/h	Up to 890 m ³ /h
Fraction feeding vapour cloud	5 vol%	10 w/w%
Fraction Lights Available	1.0	1.0
Vapour Rate (kg/s)	8.3	19.0
Cloud Slumped Height (m)	2.0	2.0
Cloud Area (m²)	50,000	120,000
Cloud Volume (m³)	100,000	240,000

Consequence Assessment: Estimating Cloud Size and Impact

- Dispersion modelling used to estimate the influence of wind speed / stability on cloud size
- Compare estimated cloud size with ranges considered in the Illustrative Model
 - Range considered appropriate 50,000 m³ -150,000 m³
- Used Decay Curves used in Illustrative Model to calculate overpressure for selected cloud size range
 - Curves developed based on damage observed at Buncefield

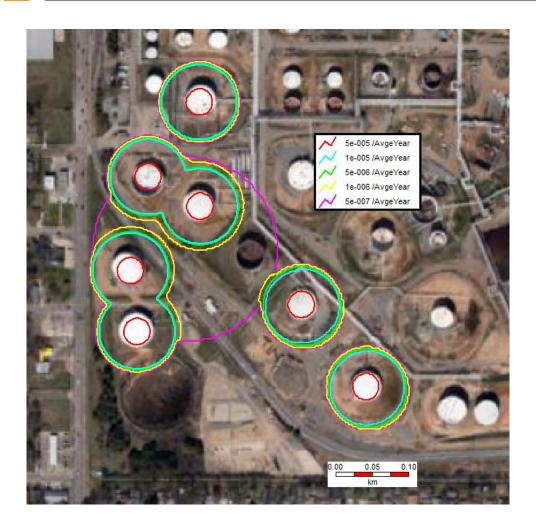
Risk Evaluation: Frequency and Consequence

- Low frequency:
 - 2.43×10⁻⁸ per tank per year (0.02 per million per year)
- Far-reaching consequence:
 - Overpressures impact estimated from 50,000-150,000 m³ Max:

• 35 kpa 126 m (*cloud edge*)

• 21 kPa 212 m

• 14 kPa 255 m


• 7 kPa 367 m

 Include derived values in QRA model to generate risk contours for facility

Risk Results for Seven ULP Tanks: QRA Output without Tank Overfill

Risk Results for Seven ULP Tanks: QRA Output with Tank Overfill

RISK Conclusion

 Buncefield scenario can be efficiently incorporated into a QRA whilst capturing site specfic elements

- Event not a significant contributor to overall risk profile
- Higher contribution if there are concerns around controls
- Long-term focus on an assessing and maintaining control adequacy

Thank you